Topology-Oriented Convex Hull Algorithm for Objects Bounded by B ezier Curves
نویسندگان
چکیده
Il existe de nombreux algorithmes de calcul pour l'enveloppe convexe d'un polygone simple. Il existe aussi des propositions d'algorithmes calculant, a l'aide de quelques primitives assez complexes, l'enveloppe convexe d'objets born es non pas par des segments de droite, mais par des courbes planes suusament lisses et convexes par morceaux. Les r esultats fournis par les algorithmes actuels sont des objets approchant l'enveloppe convexe de l'objet courbe donn e, la qualit e de l'approximation dependant de la pr ecision avec laquelle les primitives peuvent ^ etre r esolues. R esoudre ces primitives demande la r esolution d' equations alg ebriques de degr e elev e. Ce rapport de recherche pr esente une approche diierente du probl eme de l'enveloppe convexe d'objets non-lin eaires, plac ee dans un contexte "calcul g eom etrique". Ainsi, toute la discussion est men ee sous l'hypoth ese que les equations alg ebriques ne peuvent pas ^ etre r esolues de mani ere exacte (Chazelle, 1996). Pour concr etiser cette approche, nous proposons un algorithme calculant l'enveloppe convexe d'une poly-courbe, qui est union de courbes param etriques contr^ ol ees par des points ayant un polygone de contr^ ole simple et convexe. Ces courbes doivent satisfaire des propri et es assez g en erales ; pour xer les id ees, nous avons choisi les courbes de B ezier pour la pr esentation de nos r esultats. La m ethode que nous proposons met l'accent sur les aspects topologiques. La notion d'enveloppe convexe topologique est introduite et nous montrons qu'elle peut ^ etre obtenue par des discr etisations convenables de l'objet courbe. La discr etisation semble une approche na ve et co^ uteuse, mais nous prou-vons, premi erement, que l'objet lin eaire obtenu capture tous les caract eristiques topologiques de celui non-lin eaire, et deuxi emement, que la taille de ce polygone reste raisonable. Du point de vue pratique, nous donnons une m ethode de construction de l'objet lin eaire mentionn e qui ne demande pas de r esolution d' equations alg ebriques. Abstract There exist many algorithms computing the convex hull of a simple polygon. There also exist some proposals of algorithms computing, using a few complex "oracles", the convex hull of objects bounded not by straight line segments, but by smooth piecewise convex planar curves. The results provided by the existing algorithms are objects approaching the convex hull of the given curved object, the quality …
منابع مشابه
On the Convex Hulls of Parametric Plane Curves
Linear-time convex hull algorithms are known to exist for polygons and planar objects bounded by piecewise algebraic curves. Most of the existing algorithms laboriously trace out the so-called “pockets” formed by the concave portions of an object’s boundary. Objects bounded by general parametric curves have been excluded from the previous study partly because the nature of computation is seemin...
متن کاملLinear-time geometric algorithm for evaluating B\'ezier curves
New algorithm for evaluating a point on a Bézier curve and on a rational Bézier curve is given. The method has a geometric interpretation and a convex hull property. The computational complexity of the new algorithm is linear with respect to the degree of the considered curve, and its memory complexity is O(1).
متن کاملON THE CONVEX HULL GENUS OF SPACE CURVES-t
LET K C R3 be a simple closed curve, and K be its convex hull. In [l], Almgren and Thurston define the (oriented) convex hull genus of K to be the minimal genus of an (oriented) surface contained in g and bounded by K. They give examples showing that even if K is unknotted both the orientable and non-orientable convex hull genus of K may be arbitrarily large. In 43 of this paper we show that th...
متن کاملTENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE
In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...
متن کاملEecient Rendering of Trimmed Nurbs Surfaces
We present an algorithm for interactive display of trimmed NURBS surfaces. The algorithm converts the NURBS surfaces to B ezier surfaces and NURBS trimming curves into B ezier curves. It tessellates each trimmed B ezier surface into triangles and renders them using the triangle rendering capabilities common in current graphics systems. It makes use of tight bounds for uniform tessel-lation of B...
متن کامل